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Fig. 6. Comparison ofZ and (10).� = 10, p = 10, � = 8,
(W =H) = (1=2), and f = 11:8 GHz (dashed–dotted line: for (10),
solid-line: our proposed methodZ ).

TABLE I
EFFECTIVE DIELECTRIC-CONSTANT COMPARISON WITH � = 8,

2W =H = 1, and� = 1

for bothJx andJy. The agreement between this paper and that pre-
sented in [3] is excellent. The total time taken to compute the effec-
tive dielectric constant for the case ofH=�o = 1 is 4 s on a Pentium
400-MHz personal computer.

V. CONCLUSION

In this paper, the Sonie–Schafheitlin integration formula and the
sampling theorem have been integrated into the conventional spec-
tral-domain method to form an efficient and fast convergent hybrid
method. Closed-form asymptotic integrals are first derived without in-
troducing any numerical pathologies and complexities. Numerical re-
sults obtained from this approach agree very well with those reported
in the literature. A substantial reduction in CPU time is also achieved
using this formulation.
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Scattering Matrices Representing the Transformations
Between Modal Bases in Rectangular Waveguide

A. Morini, T. Rozzi, and L. Zappelli

Abstract—The excitation of hybrid modes by discontinuities in rect-
angular waveguide can often be decomposed into separate LSE/LSM or
TE/TM mechanisms, so that each component can be analyzed with the
most suitable modal base. Correct interfacing, however, is required. We
report the scattering matrices representing all the possible transforma-
tions of modal bases in rectangular waveguide. Such matrices provide an
useful tool to simulate complex circuits made up of components strongly
interacting, without requiring the use of a common modal base for the
characterization of each element. Since the transformation matrices can
easily include pieces of transmission lines, their use does not require any
additional computation effort.

Index Terms—Mode matching, rectangular waveguides.

I. INTRODUCTION

The electromagnetic (EM) field into a rectangular waveguide can be
expanded into three different sets of modes, namelyH andE types
with respect tôx, ŷ, andẑ (the latter are the classical TE/TM modes).
However, although in principle any one is equivalent to another, in prac-
tical use, the analysis and computation effort required to characterize
monodimensional discontinuities, such as T/Y-junctions, inductive or
capacitive posts and windows, bends, tapers, and so on (see Fig. 1) is
strongly reduced when the most appropriate set is used [1]. The latter
is the one whose modes are derived from two potentials (H andE)
parallel to the axis of the discontinuity (that is, the one with respect to
which the discontinuity is uniform). As a consequence, the complete
analysis of the discontinuity can be performed considering separately
the two families of modes (E andH), as not being coupled at all by
the discontinuity.

Consequently, the EM problem posed by such structures reduces to
a scalar one, as the continuity condition at the discontinuity interface
involves only one potential directed along one coordinate and its first
derivative at a time.

On the other hand, in complex structures, there are many discontinu-
ities and components connected together and often strongly interacting
through higher order modes. A classical example of this situation is of-
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Fig. 1. Some examples of common waveguide components uniform along
one direction. (a) Inductive round post. (b)E-plane mitered bend. (c)E-plane
T-junction. (d) Inductive window.

Fig. 2. Ka-diplexer consisting of anE-plane three-port junction connected to
twoE-plane septate filters. Due to the different uniformities, it is advantageous
to study the two structures by means of two different modal bases.

fered by theKa-diplexer, shown in Fig. 2. It consists of two septate
filters connected to the arms of anE-plane T-junction. Due to the uni-
formity of septa and junction with respect to two directions orthogonal
to each other, the two modal bases suited to solve each problem are
different. Of course, if the spacing between the first septum of filters
and the junction is large enough (at least one waveguide widtha), in-
teraction occurs only via the fundamental mode, and the connection of
the two models, although based on different modes, does not pose any
problem. Often, however, such distance is shorter thana and higher
order modes interaction has to be taken into account. A possible solu-
tion to this problem, the most commonly used indeed, consists of em-
ploying the same modal base, typically TE and TM modes (H andE
modes with respect tôz) for both cases, as the resulting scattering ma-
trices can be connected directly. The drawback of such an approach is
that it does not take advantage of the uniformity of each discontinuities
and the resulting EM problem, i.e., the continuity of the tangential EM
field at the discontinuity interfaces, involves vector, instead of scalar,
fields.

This, of course, implies losing compactness in formulation and ef-
ficiency in the numerical solution. In addition, sometimes one has to
connect scattering matrices resulting from different EM simulators, not
always sharing the same modal bases.

It is also apparent that a major limitation of some otherwise excellent
computer-aided design (CAD) tools and EM simulators is often caused
by the impossibility of connectingE- andH-plane circuits with pieces
of waveguide unless the interconnecting waveguides are long enough
(at least one waveguide width), as those codes are unable to manage
the interactions between different families of modes [2].

This paper provides a solution to this problem by showing how to
connect scattering matrices deriving from different modal bases by
means of the matrices representing the transformation of one modal
base into another one.

Fig. 3. Section of a rectangular waveguide showing the coordinate system.

Such matrices have the form of a generalized scattering matrix and
can be handled as any junction. It is, therefore, possible to analyze a
complex structure, consisting of the interconnection of many junctions,
while characterizing each junction with its more appropriate modal
base [1] and connecting the elementary junctions by the interposition
of such transformation matrices when the adjacent junctions are ana-
lyzed with distinct modal bases.

We will call such matricestransformation scattering matricesor,
more briefly,� matrices.

Moreover, since the junctions are always separated by pieces of
waveguides, the� matrices can be easily modified to include pieces of
lines in such a way that just one� matrix represents both the change of
modal base and the connecting lines. Thus, the use of a� matrix has
the same computational cost as that of a (generalized) transmission
line.

II. DERIVATION OF THE � MATRICES

A complete modal base to represent the field into a rectangular wave-
guide can be derived from two Hertzian potentials�e and�h, both
directed as either̂x or ŷ or ẑ (Fig. 3)

�e = e(x; y)e
�
z

û (1)

�h = h(x; y)e
�
z

û (2)

whereû is eitherx̂ or ŷ or ẑ, 
2 = k2tnm � k20 , k2tnm = (n�=a)2 +
(m�=b)2, a, b are the dimensions of the transverse waveguide section,
andk0 is the wavenumber in the free space. The upper sign refers to
positive traveling waves, the lower to the negative ones.

In order to correctly represent a given modal base into another, it is
essential to choose the sign of the Hertzian potentials in such a way that
the resulting transverse modal fields take the following form:

Et�(x; y; z) = a1e�(x; y)e
�
z + b1e�(x; y)e

+
z (3)

Ht�(x; y; z) = a1h�(x; y)e
�
z

� b1h�(x; y)e
+
z (4)

wheree�(x; y), h�(x; y) are the transverse electric and magnetic
modal functions, normalized in such a way that

cross section

e� � h� � ds = ��� (5)

� and� are global indexes, standing for the polarization (E=H) and
the eigenvaluektnm.

This means that the potential are normalized in such a way that a
modal wave propagating in the positive direction differs from one prop-
agating in the negative direction just for the sign of the transverse mag-
netic field.Note also that the normalization condition (5) only holds
for modal functions deriving from vector potentials that are parallel.
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Fig. 4. � matrix represents the transformation of one modal base into another
at an arbitrary waveguide sectionz.

According to the above assumption, the scalar functions ’s ap-
pearing in (1) and (2) assume the following forms.
E,H modes with respect tôx (LSMx;LSEx)

 e(x; y) = � Aex cos kxx sin kyy (6)

 h(x; y) =Ahx sin kxx cos kyy: (7)

E,H modes with respect tôy (LSMy;LSEy)

 e(x; y) = � Aey sin kxx cos kyy (8)

 h(x; y) =Ahy cos kxax sin kyy: (9)

E, H modes with respect tôz (TM, TE)

 e(x; y) =Aez sin kxx sin kyy (10)

 h(x; y) = � Ahz cos kxx cos kyy: (11)

The expressions of the normalization constantsA’s are reported in
the Appendix. As usual,kx = (n�=a), ky = (m�=b).

Once the normalized modal vectorsepu , hpu , pu indicating the po-
larization, eitherH orE, of the potential directed alonĝu, have been
calculated in the classical way for each Hertzian potential [3], it is
immediate to compute the coupling coefficientssp ; p

uv between two
modes, both corresponding to the same eigenvaluektnm, deriving from
potentials directed alonĝu andv̂, respectively,

sp ; p
uv =

cross section

e
p
u � h

p
v � ds: (12)

The calculation of the coupling coefficients is straightforward and
produces as a result the� -scattering matricesSu!v representing the
transformation of the modes derived from two potentials directed along
one direction, say,̂u, to the ones derived from another directionv̂.

In other words, the above matrix represents a junction actually lo-
cated at a given waveguide sectionz. The waves incident into ports 1
(modesH andE with respect tôu) and 2 (modesH andE with re-
spect tôv), are linked to the ones reflected at the same ports, as shown
in Fig. 4. Considering the (4� 4) block corresponding to the eigen-
valuektnm, we have

bH1u

bE1u

bH2v

bE2v

= Su!v

aH1u

aE1u

aH2v

aE2v

(13)

Fig. 5. E-plane section of an oversize T-junction terminated on standard
waveguides via two tapers. The sketch is not on scale.

where

Su!v =
0 Suv

STuv 0
: (14)

It is easy to recognize that the forward and reverse transformation
matrices are linked to each other by the following:

Sv!u = S
T
u!v

: (15)

Thus, the expressions of the� matrices are as follows:

Szx =
1

(k2
0
� k2x)(k2x + k2y)

j
kx �k0ky
�k0ky �j
kx

(16)

Szy =
1

(k2
0
� k2y)(k2x + k2y)

j
ky k0kx
k0kx �j
ky

(17)

Sxy =
1

(k2
0
� k2y)(k

2

0
� k2x)

�kxky j
k0
�j
k0 �kxky

: (18)

As can be observed, the above matrices represent an ideal transition
between two different families of modes. It is evident thatSuu is the
unit matrixU, and it can also be easily verified that

Su!v � Sv!u =
0 U

U 0
(19)

where the symbol� indicates the operation of cascade connection of
two networks represented by their scattering matrices.

Of course, the following property also holds:

Su!v � Sv!w = Su!w: (20)

Commonly, in microwave circuits, one has to connect two disconti-
nuities or circuits separated by a lengthl of waveguide.

In this case, the transformation matrix ought to be able to include the
length of waveguide too. This is easy to obtain, simply by multiplying
each block (one for each eigenvalue) of the transformation matrix for
the propagation term

S
l
uv = Suve

�
l: (21)

Therefore, the� matrix can be seen as a generalization of the gener-
alized scattering matrix (GSM) representing a piece of waveguide that,
in addition, provides a modal transformation.
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Fig. 6. Equivalent network model of the oversized T-junction. The� matrix permits the connection between modes having the same indexes, but deriving from
different potentials. As known,TE andLSE modes are equivalent and their connection does not require the interposition of a� matrix.

Fig. 7. Comparison between the theoretical and experimental reflections at
port 1 of the oversized T-junction shown in Fig. 5.

III. EXAMPLE

As an example of application of the above theory, we consider a
component given by the connection between a WR28E-plane over-
sized T-junction and two tapered sections, as sketched in Fig. 5. Three
modes, i.e.,TE10, TE11, andTM11, can propagate through the over-
size section(b00 = 2b0) over the waveguide band. On the other hand,
being both the three-port junction and the tapers uniform with respect
to x, they could be conveniently analyzed considering separately the
LSEx andLSMx cases. In both cases, the EM problem is scalar as in-
volving the continuity at the discontinuity interfaces ofEy andHx in
theLSEx case, and the continuity ofHy andEx, in theLSMx case.
In addition, the analysis underLSEx excitation suffices for a complete
characterization of the junction because, due to the uniformity with re-
spect tox, LSMx modes are not excited at all. In our case, the GSM
of the tapers derives from HFSS1 and it is expressed in terms of TE
and TM modes. The GSM of the three-port junction, modeled by our-
selves, is expressed in terms of the most appropriate modal base, i.e.,
theLSEx. In order to connect the two GSMs, we have to insert them
between the� -matrix introduced in this paper representing the transfor-
mation TE/TM intoLSEx/LSMx. Moreover, the two pieces of over-
sized waveguide of lengthl, separating the three-port junction and the
tapers, are automatically taken into account considering the� -matrix
in the form of (21).

1HFSS Beta version 6.0.02, Ansoft Corporation ©1994–1998.

The physical situation is represented by the circuit shown in Fig. 6.
Finally, note that theLSM11 mode is terminated by a matched load, as
it is not actually excited by the structure. For the sake of brevity, only
the reflection at one port is shown in Fig. 7. The agreement between
theoretical and experimental data is due both to the accuracy of the EM
analysis of each individual block and to the correctness of the proposed
� -matrix.

IV. CONCLUSIONS

Transformation matrices permit to connect GSMs representing
waveguide components, when they are modeled starting from different
modal bases. Their use is particularly effective, as they can be consid-
ered a generalization of a GSM representing a length of waveguide,
with the additional feature that the modal base at the input is different
from that at the output.

APPENDIX

The expressions of the modal normalization constants are as follows:

Aex =
�n�mp
ab

�j!�
 k
2

0 � k
2

x
�1=2

(22)

Ahx =
�n�mp
ab

�j!�0
 k
2

0 � k
2

x
�1=2

(23)

Aey =
�n�mp
ab

�j!�
 k
2

0 � k
2

y
�1=2

(24)

Ahy =
�n�mp
ab

�j!�0
 k
2

0 � k
2

y
�1=2

(25)

Aez =
�n�mp
ab

j!�
 k
2

x + k
2

y
�1=2

(26)

Ahz =
�n�mp
ab

j!�0
 k
2

x + k
2

y
�1=2

(27)

where�0 = 2 and�k =
p
2 for k 6= 0.
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