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angular waveguide can often be decomposed into separate LSE/LSM or
TE/TM mechanisms, so that each component can be analyzed with the

e This work (3] [10] most suitable modal base. Correct interfacing, however, is required. We
0.005 54678 54678 | 5.4752 report the scattering matrices representing all the possible transforma-
0.05 6.1274 6.1275 | 6.1316 tions of modal bases in rectangular waveguide. Such matrices provide an

0.1 6.7582 6.7580 | 6.7572 useful tool to simulate complex circuits made up of components strongly

0'3 7'661 7'6614 7.6551 interacting, without requiring the use of a common modal base for the

’ . . . characterization of each element. Since the transformation matrices can

0.7 7.9133 7.9139 | 7.9151 easily include pieces of transmission lines, their use does not require any

1.0 7.9529 7.9529 | 7.9556 additional computation effort.
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for both J. and.J,. The agreement between this paper and that pre-
sented in [3] is excellent. The total time taken to compute the effec-
tive dielectric constant for the case Hf/A, = 1is 4 s on a Pentium
400-MHz personal computer.

|. INTRODUCTION

The electromagnetic (EM) field into a rectangular waveguide can be
expanded into three different sets of modes, nart&lgnd E types
with respect tak, ¥, andz (the latter are the classical TE/TM modes).
However, although in principle any one is equivalent to another, in prac-
In this paper, the Sonie-Schafheitlin integration formula and theal use, the analysis and computation effort required to characterize
sampling theorem have been integrated into the conventional spg@nodimensional discontinuities, such as T/Y-junctions, inductive or
tral-domain method to form an efficient and fast convergent hybrighpacitive posts and windows, bends, tapers, and so on (see Fig. 1) is
method. Closed-form asymptotic integrals are first derived without igtrongly reduced when the most appropriate set is used [1]. The latter
troducing any numerical pathologies and complexities. Numerical fig-the one whose modes are derived from two potentElsatd E)
sults obtained from this approach agree very well with those reportggrallel to the axis of the discontinuity (that is, the one with respect to
in the literature. A substantial reduction in CPU time is also achieveghich the discontinuity is uniform). As a consequence, the complete
using this formulation. analysis of the discontinuity can be performed considering separately
the two families of modesE andH), as not being coupled at all by
the discontinuity.
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Fig. 3. Section of a rectangular waveguide showing the coordinate system.

(a)
v {c)
b l } 1 Q‘ Such matrices have the form of a generalized scattering matrix and
(b) I can be handled as any junction. It is, therefore, possible to analyze a

complex structure, consisting of the interconnection of many junctions,

. . . while characterizing each junction with its more appropriate modal
Fig. 1. Some examples of common waveguide components uniform al

one direction. (a) Inductive round post. Bplane mitered bend. (&-plane Pdse [1] and connecting the elementary junctions by the interposition
T-junction. (d) Inductive window. of such transformation matrices when the adjacent junctions are ana-

lyzed with distinct modal bases.

We will call such matricegransformation scattering matricesr,
more briefly,7 matrices.

Moreover, since the junctions are always separated by pieces of
waveguides, the matrices can be easily modified to include pieces of
lines in such a way that just onematrix represents both the change of
modal base and the connecting lines. Thus, the userafatrix has
the same computational cost as that of a (generalized) transmission

line.
Fig. 2. Kua-diplexer consisting of ali-plane three-port junction connected to II. DERIVATION OF THE 7 MATRICES
two E-plane septate filters. Due to the different uniformities, it is advantageous N
to study the two structures by means of two different modal bases. A complete modal base to represent the field into a rectangular wave-

guide can be derived from two Hertzian potentiHls andIl,, both

. o . directed as eithex or y or z (Fig. 3)
fered by theK a-diplexer, shown in Fig. 2. It consists of two septate

filters connected to the arms of &plane T-junction. Due to the uni-
formity of septa and junction with respect to two directions orthogonal e =¢.(z, ye™ "0 ()
to each other, the two modal bases suited to solve each problem are I, =n(x, y)et i 2
different. Of course, if the spacing between the first septum of filters
and the junction is large enough (at least one waveguide widltim- L L, ) s 1o )
teraction occurs only via the fundamental mode, and the connectior}'\ﬂ?ere“lz's eitherx ory orz, 7" = kinm — ko, kinm = (nm/a)” +
the two models, although based on different modes, does not pose gy /?) "> ¢, b are the dimensions of the transverse waveguide section,
problem. Often, however, such distance is shorter thamd higher and.k.o is the vyavenumber in the free space. The upper sign refers to
order modes interaction has to be taken into account. A possible sdlgsitive traveling waves, the lower to the negative ones. o
tion to this problem, the most commonly used indeed, consists of em/n order to correctly represent a given modal base into another, it is
ploying the same modal base, typically TE and TM moddsahdE essential Fo choose the sign ofthe Hertzian potentlal§ in such a way that
modes with respect ) for both cases, as the resulting scattering m4he resulting transverse modal fields take the following form:
trices can be connected directly. The drawback of such an approach is
that it does not take advantage of the uniformity of each discontinuities Eo(x, y. 2) =arex(z, y)e 7* +biex(z, y)et?? 3)
and the resulting EM problem, i.e., the continuity of the tangential EM
field at the discontinuity interfaces, involves vector, instead of scalar,
fields.
This, of course, implies losing compactness in formulation and &fhere e, (, y), hy(z, y) are the transverse electric and magnetic
ficiency in the numerical solution. In addition, sometimes one has ffodal functions, normalized in such a way that
connect scattering matrices resulting from different EM simulators, not
always sharing the same modal bases. .
Itis also apparent that a major limitation of some otherwise excellent / ex x h, - ds =6y, (5)
computer-aided design (CAD) tools and EM simulators is often caused cross section
by the impossibility of connectinB- andH-plane circuits with pieces
of waveguide unless the interconnecting waveguides are long enoughndy: are global indexes, standing for the polarizati®#yH) and
(at least one waveguide width), as those codes are unable to marthgeesigenvalué,,, ., .
the interactions between different families of modes [2]. This means that the potential are normalized in such a way that a
This paper provides a solution to this problem by showing how tmodal wave propagating in the positive direction differs from one prop-
connect scattering matrices deriving from different modal bases bgating in the negative direction just for the sign of the transverse mag-
means of the matrices representing the transformation of one modetic field. Note also that the normalization condition (5) only holds
base into another one. for modal functions deriving from vector potentials that are parallel

H,\(z, y, z) =arh\(z, y)e 7" — bihy(«, y)e%’z (4)
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Fig. 4. T matrix represents th(_a transformation of one modal base into anotfi@g. 5. E-plane section of an oversize T-junction terminated on standard
at an arbitrary waveguide section waveguides via two tapers. The sketch is not on scale.

According to the above assumption, the scalar functiolssap- \ypere
pearing in (1) and (2) assume the following forms.

E, H modes with respect t& (LSM,, LSE,) 0 S
Su—v = 7 o |- (14)
Ve(w, y) = £ Acp cosk,xsink . . .
lf (2, ) ) 08 Ba® UL Ryl () It is easy to recognize that the forward and reverse transformation
Un(x, y) = Aps sinkzw cos kyy. (7)  matrices are linked to each other by the following:
E, H modes with respect tp (LSM,, LSE,) Sy w=s__. (15)
Ve, y) = F Acy sin k. cos ky 8 ) )
L, (2, ) = F Aey sin l.ws vy ® Thus, the expressions of thematrices are as follows:
Yp(x, y) = Apy cos kyaz sin kyy. 9)
. 1 [ jvks —koky ]
E, H modes with respect t& (TM, TE S.e = = . 16
. . 1 [~k koky
Pela, y) = Aco sinkpa sin k1 10 S., = sy . 17
’ (x, y) vy (10) Y VR — k) (k2 + E2) Lkoka  —jvky ")
Yn(x, y) = F An: cos kpx cos kyy. (11) : b . _
S = 1 —koky Jvko (18)
S 2 _ 12) (52 — k2 | —jvko —k.ok, |
V(2 —k2) (k2 — k2) [ —Jjvko wky |

The expressions of the normalization constatits are reported in
the Appendix. As usuak. = (nw/a), ky = (mn/b).

Once the normalized modal vecta#d: , hZ*, p, indicating the po- As can be observed, the above matrices represent an ideal transition
larization, eithef or E, of the potential directed alon@, have been between two different families of modes. It is evident tBat, is the
calculated in the classical way for each Hertzian potential [3], it init matrixU, and it can also be easily verified that
immediate to compute the coupling coefficienfs'’* between two

modes, both corresponding to the same eigenvalug, deriving from 0 U
potentials directed along andv, respectively, Su—v ©Sv—u = U o (19)
shw Py — / el* x h2* - ds. (12) where the symbob indicates the operation of cascade connection of
cross section two networks represented by their scattering matrices.

) ) o ) ) Of course, the following property also holds:
The calculation of the coupling coefficients is straightforward and

produces as a result thescattering matriceS,— representing the
transformation of the modes derived from two potentials directed along Su—v @ Svew = Su—w- (20)
one direction, sayi, to the ones derived from another direction

In other words, the above matrix represents a junction actually 10-commonly, in microwave circuits, one has to connect two disconti-
cated at a given waveguide sectionThe waves incident into ports 1 pyjities or circuits separated by a lengtbf waveguide.
(modesH andE with respect to) and 2 (modedI andE with re- | thjs case, the transformation matrix ought to be able to include the
spect tov), are linked to the ones reflected at the same ports, as showRgth of waveguide too. This is easy to obtain, simply by multiplying
in Fig. 4. Considering the (4 4) block corresponding to the eigen-gach block (one for each eigenvalue) of the transformation matrix for

valuekinm, we have the propagation term
b1, aty, Sl =S..e (21)
b af, , .
=Su_v (23) Therefore, the- matrix can be seen as a generalization of the gener-

H
bay 20 alized scattering matrix (GSM) representing a piece of waveguide that,

vy af in addition, provides a modal transformation.
v 2v
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Fig. 6. Equivalent network model of the oversized T-junction. Thaatrix permits the connection between modes having the same indexes, but deriving from
different potentials. As known'E,, andL.SE;, modes are equivalent and their connection does not require the interpositiennodiix.
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The physical situation is represented by the circuit shown in Fig. 6.
Finally, note that th&SM; mode is terminated by a matched load, as
it is not actually excited by the structure. For the sake of brevity, only
the reflection at one port is shown in Fig. 7. The agreement between
theoretical and experimental data is due both to the accuracy of the EM
analysis of each individual block and to the correctness of the proposed
T-matrix.

IV. CONCLUSIONS

Transformation matrices permit to connect GSMs representing
waveguide components, when they are modeled starting from different
modal bases. Their use is particularly effective, as they can be consid-
ered a generalization of a GSM representing a length of waveguide,
with the additional feature that the modal base at the input is different
from that at the output.

APPENDIX
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Fig. 7. Comparison between the theoretical and experimental reflections at
port 1 of the oversized T-junction shown in Fig. 5.

I1l. EXAMPLE

As an example of application of the above theory, we consider a
component given by the connection between a WE2glane over-
sized T-junction and two tapered sections, as sketched in Fig. 5. Three
modes, i.e.TE o, TEy, andTM,, can propagate through the over-
size section(d” = 2b') over the waveguide band. On the other hand,
being both the three-port junction and the tapers uniform with respect

The expressions of the modal normalization constants are as follows:
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to z, they could be conveniently analyzed considering separately feree, = 2 ande;, = /2 for k # 0.

LSE, andLSM,, cases. In both cases, the EM problem is scalar as in-
volving the continuity at the discontinuity interfacesiBf and H . in

the LSE, case, and the continuity @, and E.., in theLSM,, case.

In addition, the analysis und&SE, excitation suffices for a complete
characterization of the junction because, due to the uniformity with re-
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